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Abstract
We give a sufficient condition for a uniformly contracting self-similar set
to have the separation property. For uniform contractions of the real line:
fi(x) = cx + ai, i = 1, 2, . . . , r , with 0 < c < 1 and 0 = a1 < a2 < · · · <

ar = 1 − c < 1, we prove that the open set condition of Hutchinson holds if
q(c) �= 0 for all power series q(x) = ∑∞

k=0 dkx
k , where dk = ai −aj , for some

i, j = 1, 2, . . . , r , for all k = 0, 1, 2, . . . , and d0 �= 0. Finally, we give two
examples.

PACS number: 05.45.Df

1. Introduction

In the study of fractal geometry, the first simple examples arise in the following manner: given
contracting similitudes fi , i = 1, 2, . . . , r , on Euclidean Rd there exists a unique nonempty
compact set A such that A = ⋃r

i=1 fi(A), a so-called self-similar fractal. The first observation
in this context is that the similarity dimension and the Hausdorff dimension of A coincide if
the ‘pieces’ fi(A) are pairwise disjoint. This result remains true if the pieces have only ‘small
overlap’, which is sometimes called ‘just touching’ [3–5]. To describe this separation property
Hutchinson [6] and Moran [8] gave the following definition: the open set condition (OSC) is
fulfilled iff there is a nonempty open set V such that the sets fi(V ) are disjoint and contained
in V . Since the intersection of V and A may be empty, Lalley [7] strengthened the definition
as follows: the strong open set condition (SOSC) holds iff furthermore V ∩ A �= φ.

When the OSC is fulfilled we have a desirable situation: all the usual definitions of
dimensions such as Hausdorff, similarity, box-counting and packing dimensions give the same
value [4]. The similarity dimension is easy to compute, and the Hausdorff dimension is
generally applicable and has many useful properties. Moreover, many interesting properties
of the self-similar set such as its topology, measure or dimension seem to depend on OSC
[1, 2, 4, 7, 9, 10].
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The OSC of Hutchinson is the most celebrated condition that ensures that there is not too
much overlapping. However appealing this condition may be, it is not easy to check since
except for some simple examples the open set V , if it exists, may be almost as exotic as A

itself. For this reason various equivalent conditions have been developed. Schief [9] proved
that the SOSC and the OSC are both equivalent to Hα(A) > 0 where α is the similarity
dimension of A, and Hα denotes the Hausdorff measure of this dimension. This result shows
that an algebraic condition developed previously by Bandt and Graf [2] is also equivalent to
the OSC. At first glance the algebraic condition might seem to be handy but in fact, to the
best of our knowledge, it is still not easy to check. That is why we looked for other, more
convenient conditions.

In the present paper, we will give an analytic condition for uniformly contracting self-
similar sets to have the separation property. In order to show that the condition is useful in
practice, we finally give two examples. It has to be mentioned that the question of whether
the OSC implies the analytic condition remains open.

This paper is organized as follows. In section 2, we present some preliminaries and prove
two lemmas that we will need for our work. Section 3 contains the proof of our main results.
Finally, section 4 contains two examples.

2. Preliminaries

Let f1, . . . , fr be contracting similitudes on Euclidean R with contraction ratios ci ∈ (0, 1),
i.e. fi(x) = cix + ai, for all x ∈ R. Then the unique nonempty compact set A with
A = ⋃r

i=1 fi(A) is in general a fractal. This set is called a self-similar set and is called a
uniformly contracting self-similar set whenever c1 = c2 = · · · = cr = c.

We will prove two lemmas for our work. One lemma clarifies the relation between two
uniformly contracting self-similar sets, and another gives the compact property of the set of
analytic functions.

Lemma 2.1. Let gi : R → R be given by gi(x) = cx + bi, i = 1, . . . , r , with b1 < · · · < br

and fi : R → R be given by fi(x) = cx + ai, with ai = (1 − c) bi−b1
br−b1

, i = 1, . . . , r . Then the
following are true:

(1) fi = S−1 ◦ gi ◦ S where S is a bijective mapping S(x) = br−b1
1−c

x + b1
1−c

.
(2) Let A and B be the self-similar sets with respect to the similitudes (f1, . . . , fr) and

(g1, . . . , gr), respectively. Then S(A) = B.

Proof.

(1) It is obvious.
(2) Since A = ⋃r

i=1 fi(A) and S ◦ fi = gi ◦ S, we have

S(A) =
r⋃

i=1

S ◦ fi(A) =
r⋃

i=1

gi ◦ S(A). (2.1)

By the uniqueness of self-similar set [4] and B = ⋃r
i=1 gi(B), we get S(A) = B. �

From lemma 2.1. we know that we can work with the self-similar set A instead of B

without loss of generality, i.e. we may assume that uniform contractions fi(x) = cx + ai with
0 = a1 < a2 < · · · < ar = 1 − c < 1. Now let us introduce some more notation necessary to
state our main results.

Take the uniform contractions, as already mentioned in lemma 2.1, of the real line:
fi(x) = cx + ai, i = 1, . . . , r, 0 < c < 1, 0 = a1 < a2 < · · · < ar = 1 − c < 1. We define
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the set D. The set D ⊂ (−1, 1) is the finite set {ai − aj : i, j = 1, . . . , r}, which is symmetric
with respect to 0 ∈ D. Furthermore, we denote by � the set of sequences

d = (d0, d1, d2, . . .) ∈ (D\{0}) × D × D × · · · . (2.2)

Finally, let us introduce the set Q of analytical functions q(x) given by

q(x) = d0 + d1x + d2x
2 + · · · + dkx

k + · · · (2.3)

where dk = ai − aj , for some i, j = 1, 2, . . . , r , for all k = 0, 1, 2, . . . and d0 �= 0.
The proof of our main results makes use of the following lemma.

Lemma 2.2. If q(c) �= 0 for all q(x) ∈ Q, then there is a number ρ > 0 such that |q(c)| � ρ,
for all q(x) ∈ Q.

Proof. First, we define a distance δ(X, Y ) between elements X = (xk)
∞
k=0, Y = (yk)

∞
k=0 ∈ �

by

δ(X, Y ) =
{

exp(−inf{k � 0, xk �= yk}) if X �= Y

0 if X = Y.
(2.4)

Note that two sequences X, Y ∈ � are close to each other, if there exists n such that xj = yj ,
0 � j � n − 1. Now we are going to prove that Q is compact in the uniform topology. Let
I = [a, b] ⊂ (0, 1) be a closed interval such that c ∈ I . We are going to be more precise about
the set, Q, of analytical functions: an element q(x) ∈ Q is a power series q(x) = ∑∞

k=0 dkx
k ,

with x ∈ I and dk ∈ D. Moreover, if q(x) ∈ Q, then d0 �= 0. Let � : � → Q be defined by

[�(d)](x) =
∞∑

k=0

dkx
k (2.5)

for d ∈ �. By the definition of Q, it follows that � is onto. Note that � is a compact set in
the uniform topology.

If d, d ′ ∈ � are sufficiently near, i.e. there exists sufficiently great integer n ∈ N such that
dj = d ′

j , 0 � j � n − 1, then the distance between �(d) and �(d ′) in the uniform topology
is

|�(d) − �(d ′)| = |(dn − d ′
n)x

n + (dn+1 − d ′
n+1)x

n+1 + · · · |
� (|dn| + |d ′

n|)xn + (|dn+1| + |d ′
n+1|)xn+1 + · · ·

� 2ar(b
n + bn+1 + · · ·) = 2bnar

1 − b
. (2.6)

This implies that � is continuous and therefore the set Q is compact. This concludes the
proof. �

3. Main results

In this section we obtain a sufficient condition for a uniformly contracting self-similar set to
have the separation property, which is an analytic condition associated with the power series
described above. Given r contracting similitudes fi(x) = cx + ai, i = 1, 2, . . . , r , we may
assume, without loss of generality (see lemma 2.1 for explanation), that 0 = a1 < a2 < · · · <

ar = 1 − c < 1, where c is the uniformly contracting ratio. We have the following theorem.

Theorem 3.1. Let A be a uniformly contracting self-similar set such that A = ⋃r
i=1 fi(A). If

q(c) �= 0 for all q(x) ∈ Q, then (f1, . . . , fr ) satisfies the OSC.
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Proof. First of all, we start with a useful construction of A for the sake of completeness. It
should be emphasized that the construction is due to [4, 6]. Let A0 = [0, 1]. It is a standard
result that fin ◦ · · · ◦ fi1(A0) is an interval of length cn for ik ∈ {1, 2, . . . , r}, 1 � k � n. The
union of all such intervals is denoted by An and is called the n-step of the construction of A.
Furthermore, fin ◦ · · · ◦ fi1(A0) is called an interval of An. Therefore we get A = ⋂∞

n=1 An.
It follows from lemma 2.2. that there exists a number ρ > 0 such that |q(c)| � ρ, for

all q(x) ∈ Q. Now we choose n0 > 0 such that ρ > cn, whenever n > n0. Consider the
n-step An of the construction A, for some n � n0, as described above. We now prove that
fi(An) ∩ fj (An) = φ, for all i, j = 1, . . . , r , i �= j . Suppose, contrary to the assertion,
that fi(An) ∩ fj (An) �= φ for some pair i, j . This means that there are intervals J, J ′ of An

such that fi(J ) ∩ fj (J
′) �= φ, from which we have that the distance between the left ends

of the intervals fi(J ) and fj (J
′) is bounded by cn+1. On the other hand, since the left ends

of the intervals J and J ′ are
∑n

k=0 akc
k, ak ∈ {a1, . . . , ar} and

∑n
k=0 a′

kc
k, a′

k ∈ {a1, . . . , ar},
respectively, it follows that this distance is

fi

(
n∑

k=0

akc
k

)
− fj

(
n∑

k=0

a′
kc

k

)
= (ai − aj ) +

∑n

k=0
(ak − a′

k)c
k+1.

Note that (ai − aj ) �= 0. Thus, there exists an analytic function q(x) = ∑n+1
k=0 dkx

k such that
it is an element of Q and cn+1 � |q(c)| � ρ > cn, which is a contradiction since 0 < c < 1.

Let Vi be the cε-neighbourhood of fi(An), i = 1, 2, . . . , r . The number ε > 0
can be chosen such that the open sets V1, . . . , Vr are pairwise disjoint, because the sets
f1(A), . . . , fr(A) are compact and pairwise disjoint. Let V be the ε-neighbourhood of An.
It is clear that fi(V ) = Vi , for all i. Moreover, V ⊃ Vi because An ⊃ fi(An). Hence,
(f1, . . . , fr ) satisfies the open set condition. �

It is well known that for self-similar sets all the usual definitions of dimensions such as
Hausdorff dimension dimH A, packing dimension dimP A, box-counting dimension dimB A

and similarity dimension dimS A give the same value when the OSC is fulfilled [4]. Then
theorem 3.1 yields the following corollary.

Corollary 3.1. Under the same hypotheses of theorem 3.1, dimH A = dimP A = dimB A =
dimS A = a < 1 and Ha(A) > 0, where a is the similarity dimension of A and Ha denotes
the Hausdorff measure of this dimension.

4. Examples

In this section we will give two examples, which show that the analytic condition is useful in
practice. More precisely, we are going to apply corollary 3.1. to two specific examples.

Example 4.1. Let A be the self-similar set with respect to the similitudes fi(x) = cx + ai ,
i = 1, 2, . . . , r , where a1 = 0, a2 = c + δ1, a3 = 2c + (δ1 + δ2), . . . , ar = (r − 1)c +

∑r−1
k=1 δk

with 0 < c, δk < 1 and rc +
∑r−1

k=1 δk = 1. Then the Hausdorff dimension of A is log r

− log c
. In

particular, the middle third Cantor set F with respect to the similitudes fi(x) = 1
3x + 2(i−1)

3 ,

i = 1, 2, has the Hausdorff dimension log 2/log 3.

Proof. To prove the example it is enough to check that (f1, f2, . . . , fr ) satisfies the analytic
condition described in theorem 3.1. For any q(x) ∈ Q, i.e. q(x) = ∑∞

k=0 dkx
k where
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dk = ai − aj , for some i, j = 1, 2, . . . , r , for all k = 0, 1, 2, . . . and d0 �= 0, recalling that
rc +

∑r−1
k=1 δk = 1, we have

|q(c)| = |d0 + d1c + d2c
2 + · · · | � |d0| − (|d1|c + |d2|c2 + · · ·)

� (c + min
1�i�r−1

δi) − ((r − 1)c + (δ1 + δ2 + · · · + δr−1))
c

1 − c

= (c + min
1�i�r−1

δi) − ((r − 1)c + (1 − rc))
c

1 − c
= min

1�i�r−1
δi > 0.

Consequently, corollary 3.1 gives dimH A = dimS A = log r

− log c
. �

Example 4.2. Let A be the self-similar set with respect to the similitudes

fi(x) = 1

2r − 1
x +

2(i − 1)

2r − 1
i = 1, 2, . . . , r.

Then for any x ∈ A we have

lim
ε→0

log Hs(A ∩ B(ε, x))

log ε
= log r

log(2r − 1)
(= dimH A = dimS A)

where B(ε, x) is the open interval of centre x and radius ε.

Proof. First, let s be the similarity dimension of A. It is easy to see s = log r

log(2r−1)
. By the

standard proof, we may get Hs(A) � |A|s where |A| is the diameter of A, i.e. the greatest
distance between any pair of points in A. Thus there exists C1 > 0 such that for any x ∈ A

and ε > 0

lim sup
ε→0

Hs(A ∩ B(ε, x))

(2ε)s
� C1. (4.1)

On the other hand, for any q(x) ∈ Q, i.e. q(x) = ∑∞
k=0 dkx

k where dk = ± 2(i−1)

2r−1 for some
i = 1, 2, . . . , r , for all k = 0, 1, 2, . . . and d0 �= 0, we have∣∣∣∣q

(
1

2r − 1

)∣∣∣∣ =
∣∣∣∣∣d0 + d1

1

2r − 1
+ d2

(
1

2r − 1

)2

+ · · ·
∣∣∣∣∣

� 2

2r − 1
− 2(r − 1)

2r − 1

((
1

2r − 1

)
+

(
1

2r − 1

)2

+ · · ·
)

= 1

2r − 1
> 0

which implies that Hs(A) > 0 from corollary 3.1. This means that there exists C2 > 0 such
that for any x ∈ A and ε > 0

lim inf
ε→0

Hs(A ∩ B(ε, x))

(2ε)s
� C2. (4.2)

Finally, the inequality (4.2) together with (4.1) yields

lim
ε→0

log Hs(A ∩ B(ε, x))

log ε
= s = log r

log(2r − 1)

and we conclude the proof of this example. �
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